Surface Chemical Analysis - Information Formats

K. Yoshihara, M. Yoshitake, S. Fukushima^a, Y. Furukawa^b, H. Kasamura^c, A. Nisawa^d, Y. Shichi^c, and A. Tanaka^f

National Research Institute for Metals 1-2-1, Sengen, Tsukuba 305 Japan

a: National Research Institute for Inorganic Materials,

b: Denki Kagaku Kogyo Co.Ltd., c: MST Foundation,

d: Rigaku Industrial Co.Ltd., e: Nissan ARC Co.Ltd., f: ULVAC-PHI Inc.

The VAMAS-Surface Chemical Analysis Standard Data Transfer Format (VAMAS Format) was approved by VAMAS Surface Chemical Analysis Community in July 1988. Since then, the VAMAS Format has been assessed by using the software named Common Data Processing System. The structure of the VAMAS Format is suitable for communication, but data storage for manipulation is quite separate matter from data communication. VAMAS Format has many terms to describe instrumental conditions, but it has almost nothing about sample information which is most imprtant part for the data storage. Therefore, information from the VAMAS Format is not enough to handle the data in the databases. The authors are the members of Japanese working group of SC3/WG1 of ISO/TC201, and have discussed the information formats which supplement the existing VAMAS Format. This format proposes three formats encoding information packages for (1) sample information, (2) calibration information, (3) data processing information.

(Received 24 January 1995)

1. Introduction

The VAMAS-Surface Chemical Analysis Standard Data Transfer Format (VAMAS Format) was approved by VAMAS Surface Chemical Analysis Community in July 1988[1]. Since then, the VAMAS Format has been assessed by using the software named Common Data Processing System [2]. The Common Data Processing System is designed to be a program to assess the data processing procedures proposed by scientists, to calibrate a spectrum and to build a spectra and correction factor database. In this system, data format of a spectrum is converted from original structure to the VAMAS Format. VAMAS Format has been proposed as Surface Chemical Analysis – Data Transfer Format in ISO/TC201.

The structure of the VAMAS Format is suitable for communication, but data storage for manipulation is quite separate matter from data communication. VAMAS Format has many terms to describe instrumental conditions, but it has almost nothing

about sample information which is most imprant part for the data storage. Therefore, information from the VAMAS Format is not enough to handle the data in the databases. However, we believe the future compatibility is essential. New systems should be able to read from the old and vice versa.

This paper proposes four formats encoding information packages for (1) sample information, (2) calibration information, (3) data processing information. This format supplements the Surface Chemical Analysis – Data Transfer Format to enhance the usefulness of Surface Chemical Analysis Data stored in databases. The format is suitable for AES and XPS spectral data.

2. Description of the Information Formats 2.1 General

The information formats are inserted into the comment lines of VAMAS Format as packages. The existing VAMAS Format could be used without alteration as a carrier for the information packages; they could

occupy the experiment-comment line or block comment lines in the VAMAS Format.

In this modular structure the reading program utilizing those information packages can look for the format identifiers in either experiment comment lines, where they apply to all blocks, or in the block-comment lines, where they apply to the one block. Existing reading programs would simply retain these as text lines.

In this paper, the information packages other than Sample Information Format, Calibration Information Format and Data Processing Format are not clearly designed. However, the other Information packages may be added. It is fully modular and new-with-old compatibility is always maintained.

2.2 Additional rules

The all lines are written in ASCII code. The each line is followed by line discriminator code defined by each computer system.

2.3 The Formats

2.3.1 Structures

Sample Information Format = format identifier 1,

host material (popular name),

IUPAC chemical name,

chemical abstracts registry number,

host material composition,

bulk purity,

known impurities,

crystal structure,

form of products,

(form of products that the specimen is used for)

supplier,

lot number,

homogeneity,

crystallinity,

material family,

special material classes,

sample mounting,

ex situ preparation,

in situ preparation,

charge control conditions,

sample temperature

(not necessary to consider the temperature change by a primary beam flux),

comment on specimen information,

Calibration Information Format = format identifier 2,
energy scale calibration,
intensity scale calibration,
resolution calibration,

Data Processing Information Format = format identifier 3, data-handling procedure,

2.3.2 Definitions of Formats

Sample Information Format

format identifier 1

= ISO Sample Information Format 1995

September 22

host material = text line;

IUPAC chemical name = text line;

chemical abstracts registry number =

text line;

host material composition = text line;

bulk purity = text line;

known impurities = text line;

structure = text line;

form of products = text line;

supplier = text line;

lot number = text line;

homogeneity = text line;

inhomogeneous

- inhomogeneous

homogeneous - homogeneous

unknown - unknown

crystallinity = text line;

single - single crystal

poly - polycrystalline

amorphous - amorphous

unknown – unknown

material family = text line;

metal - metal

inorganic - inorganic compound

organic - organic compound

polymer - polymer

semi - semiconductor

```
by "_")
           bio - biological material
           composite - composite
                                                               ex situ preparation = text line;
          super conductive
                                                                           none - none
                                                                           polish - polish
            - super conductive material
         (others)
                                                                           cleavage - cleavage
            - (propose a new family;
                                                                          ion - cut by ion beam
                each word must be
                                                                        powder_compact_steel_pad
                connected by " ")
                                                                               - powder compact using
                                                                                  steel pressure pad
special material classes = text line;
                                                                        acetone - degreased by acetone
         rod - rod or ingot
         sheet
                                                                        (others)
                                                                                  - (specify other method;
            - sheet or foil
              (without substrate)
                                                                                      each word must be
         film - thin film or coating
                                                                                      connected by "_")
              (on substrate)
                                                               in situ preparation = text line;
         sinter - sintered material
                                                                        none - none
         wafer - wafer
                                                                        ion - ion sputtering
         powder - powder
                                                                                  together with ion gun
         fiber - fiber
                                                                                  voltage, ion gun current
         (others)
                                                                                  and ion species
             - (propose a new class;
                                                                        cleavage - cleavage
                each word must be
                                                                        heating - heating
               connected by "_")
                                                                        scratch - scratch
sample mounting = text line;
                                                                        (others)
          mechanical
                                                                                - (specify other method;
             - mechanically mounted
                                                                                    each word must be
                                                                                    connected by "_")
                using screw or spring or
               etc
                                                               charge control conditions = text line;
           conductive adhesive
                                                                        none - none
              - fixed by conductive
                                                                        flood - flood gun
                 adhesive material
                                                                                together with flood gun
          nonconductive adhesive
                                                                                voltage and flood gun
              - fixed by non-conducting
                                                                                current
                 adhesive material
                                                                        screen - screen
          powder_compact _In
                                                                        (others)
             - powder compact in
                                                                                - (specify other method;
               indium foil, indium
                                                                                    each word must be
               pressure pad
                                                                                    connected by " ")
          powder_put_into
                                                               sample temperature = text line;
           - powder put into a
                                                               comment on specimen information
              conductive material(ex:
                                                                                   = text line;
              hole in copper block)
                                                    Calibration Information Format
         (others)
                                                               format identifier 2
           - (specify other method; each
```

word must be connected

= ISO Calibration Information Format

1995 September 22,
energy scale calibration = text line;

XPS_Cu_Au_Ag

- XPS using Cu, Au and Ag

peak values from SIA

14,488(1989)[3]

XPS_Cu_Au

- XPS using Cu and Au peak

values from SIA

14,488(1989)

 $XPS_C\iota\iota_Ag$

- XPS using Cu and Ag peak values from SIA 14,488(1989)

XPS_Au_Ag

 XPS using Au and Ag peak values from SIA 14,488(1989)

XPS Cu

 XPS using Cu peak values from SIA 14,488(1989)

XPS Au

 XPS using Au peak values from SIA 14,488(1989)

XPS_Ag

XPS using Ag peak values from SIA 14,488(1989)AES_Cu_Au_Ag

AES Cu Au Ag

AES using Cu, Au and Ag
 AES peak values from SIA
 15,293(1990)[4]

AES_Cu_Au

 AES using Cu and Au AES peak values from SIA 15,293(1990)

AES Cu Ag

 AES using Cu and Au AES peak values from SIA 15,293(1990)

AES_Au_Ag

- AES using Cu and Au AES peak values from SIA 15,293(1990)

AES_Cu

 AES using Cu AES peak values from SIA 15,293(1990)

AES Au

 AES using Cu AES peak values from SIA 15,293(1990)

AES_Ag

 AES using Cu AES peak values from SIA 15,293(1990)

(others)

- (specify other methods;each word must beconnected by "_")

uncalibrated - uncalibrated intensity scale calibration = text line;

JSSS

J.Surf.Sci.Soc.Jpn
 15,376(1994)[5]

(others)

(specify other methods;
 each word must be
 connected by "_")
 uncalibrated - uncalibrated

resolution calibration = text line;

(others)

- (specify other methods;
 each word must be
 connected by "_")
 uncalibrated - uncalibrated

Data Processing Information Format

format identifier 3

ISO Data Processing Information
 Format 1995 September 22,
 data-handling procedure = text line;

(specify)

 - (specify data processing procedure sequentially)
 (; each word must be connected by "_")
 unprocessed - unprocessed

Annex A Example

Example 1

ISO Sample Information Format 1995 September 22

strontium chloride strontium chloride

0476-85-4

SrC12

99.9% checked by Nissan Arc

N:0.01%,O:0.02% checked by Nissan Arc cubic fluoride crystal structure, a=6.98A

unknown

Johnson Matthey

No XYZ purchased 18 May 1993

homogeneous

poly

inorganic

powder_compact_In

none

ion 2kV 10uA Ar

none 298K

(carriage return)

ISO Calibration Information Format 1995 September 22

Αu

uncalibrated uncalibrated

ISO Data Processing Information Format 1995 September 22

unprocessed

Example 2

ISO Sample Information Format 1995 September 22

stainless steel

unkown

unkown

Fe74-Cr18-Ni8

99.9% checked by Nissan Arc

N:0.01%,O:0.02% checked by Nissan Arc

face centered cubic, a=6.98A

unknown

Johnson Matthey

No XYZ purchased 18 May 1993

homogeneous

poly

metal

sheet

mechanical

acetone

ion 2kV 10uA Ar

none

298K

(carriage return)

ISO Calibration Information Format 1995 September 22

XPS_Au uncalibrated

uncalibrated

ISO Data Processing Information Format 1995 September 22

unprocessed

References

[1] W. A. Dench, L. B. Hazel, and M. P. Seah, Surf. Interface Anal., 13, 63(1988).

[2] K. Yoshihara and M. Yoshitake, J. Vac. Sci. Tech., A12, 2342(1994).

[3] M. T. Anthony and M. P. Seah, Surf. Interface Anal., 14,488(1989).

[4] M. P. Seah, G. C. Smith, and M. T. Anthony, Surf. interface Anal., 15,293(1990).

[5] M. Yoshitake and K. Yoshihara, J. Surf. Sci. Soc. Jpn, 15,376(1994).